
RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com

Hadoop Distributed File System (HDFS) [3] is an open

source for Google File System (GFS) [1] implementation, has

been adopted by Amazon, Yahoo!, Facebook and other

companies for large-scale data storage. With HDFS, data

intensive programs could get high-throughput with simple

operations.

However, in many situations, records which application

needed were not native in HDFS [2]. Consider applications

running on thousands of cluster nodes generating log records

respectively in local disk. It is difficult using the log data

spreading in numerous nodes by the log analysis programs.

Traditional method is that making long-running processes

called agent on each machine for collecting log from disk

sending to a unique collector. Writes these records to HDFS

file through a collector node.

Traditional method is that making long-running processes

called agent on each machine for collecting log from disk

sending to a unique collector. Writes these records to HDFS

file through a collector node.

We propose a HDFS based distributed file system named

HDFS+ which can accept concurrent writes with multi data

sources besides the basic capacity of HDFS. The HDFS+ does

not guarantee the restrict order of records generated in

different nodes. We introduce a new concept of fragment.

Many independent files can be seen as a single file. HDFS+

does not provide any write functions to clients. From the

viewpoint of log analysis program, it can not write records

to the log file, they just read from it. Even so, the log file

becomes larger due to log records are written to local disk

by applications.

INTRODUCTION

We use fragments as interlayer connects the namespace

layer and data block layer. Each fragment is responsible for

a concurrent write task. The fragment is divided into HDFS

original blocks and can be written by a program. Multiple

fragments can be increased by multiple programs, one

program to one fragment. We use snapshot technology to

achieve the file read operation. When the client opens a file

in HDFS+, snapshot will creates every copies of fragments

belongs to this file. We can create a single HDFS+ file from

many local files by exchanging a local file to a fragment.

Fragment is the basic unit of concurrent writes, one

fragment can be written by one client at the same time. As

in HDFS+, files are divided into length variable fragments,

and fragments are composed by fixed-size blocks. Clients

can read file using a sequential manner. When the client

opens a file in HDFS+, snapshot will creates every copies of

fragments belongs to this file.

Kun Lu, Dong Dai, Mingming Sun

HDFS+: Concurrent Writes Improvements
for HDFS

We intend to use HDFS+ to improve programs like log

analysis in cluster of several thousands of hosts. There is a

lot of difference in file access mode between cloud

environment and traditional mode. More applications only

need to obtain a set of data, without the need to obtain the

sequential relationship between the data. Two prerequisites

are needed in our solution:

Firstly, there are numerous data producers appending

data to a file in the clusters and the data consumers won't

execute mutating operations.

Secondly, since records are self-representable that

means records contain the information such as time stamp

etc. By using the information included in records, programs

could aware the record's rough sequence order of all records.

A few applications in data analysis may use time sequence as

one of parameters in analysis. As the matter of fact, in

distributed system, there is no restrict sequence order in

two distinct nodes if no obvious synchronization. In HDFS+

programs could distinguish record's actual rank in the local

records, and rough rank in all records distributed in all nodes

by using timestamp information.

NameNode

File Namespace frag0

frag1

……

block 2ef0

block 2ef1

……

frag1/foo/bar

Application

HDFS client

HDFS NameNode

Linux file system

HDFS NameNode

Linux file system

……

……

……

Control Message

Data Message

REFERENCES

[1] Sanjay Ghemawat, Howard Gobioff and Shun-Tak Leung. The Google file system.

SIGOPS Oper. Syst. Rev., 2003.

[2] Ariel Rabkin and Randy Katz. Chukwa: a system for reliable large-scale log

collection. Proceedings of the 24th interna-tional conference on Large installation

system administration, 2010.

[3] Shvachko, K., Hairong, Kuang, Radia, S., and Chansler, R. The Hadoop Distributed

File System. Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th

Symposium on, 2010.

MOTIVATION

METHOD

