Predictive caching in computer grids

Predictive caching Caching algorithms

« Research carried out during 2012 Caching aims Traditional caching algorithms
e Aims to increase the performance of hardware and » Least recently used (LRU)

software solutions which store large datasets in a * Improve performance by using fast temporary storage

distributed fashion » Least frequently used (LFU)

 Minimize costs by reducing server load and faster data access

« Caching works by storing data onto a fast medium so that future Problem
requests can be served quickly

e Improve performance compared to solutions which
do not use predictive caching

 Traditional algorithms do not work well

« Cached data can be previous requests or original requests in a cloud / grid environment

(prefetching) o
« Significant data transfer costs for

shared ‘cloud’ cache

Predicting the user Innovation The mathematical
data access patterns model to automatically decide which objects wi optimization model
e Predicting future data requests is key to good be placed in the cache « The cache management problem is modelled as a

caching algorithms Caching the last object as in LRU may be fast but combinatorial optimization problem

 Real data is often accessed in predictable patterns Is not always optimal « Solution of the problem provides the optimal

cache allocation strategy
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. . Decision variables
Predictive caching example

Time 1: object 5 requested, cache miss. Optimization model decides to {1, if object 7; is placed in the cache,
Xi =

cache objects 5 and 6, and eject objects 1 and 3. 0, if object T is not placed in the cache.
Time 2: object 6 requested, cache hit. Optimization model decides not to

make any changes in the cache at this time period.
Time 3: object 2 requested, cache hit, etc. Optimization model
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» Data access patterns are implemented in the z six; < C
model via calculated object request probabilities 2

cache hit
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Evaluation results Calculating the cache
« Tested the caching framework in simulation scenarios - Object prObab|||t|eS

 The proposed method delivers up to 46% more cache hits and
43% smaller costs compared to the LRU algorithm

» Similarly, the optimized caching algorithm produces up to 26%
more cache hits and 30% smaller costs compared to LFU

 The probabilities in the predictive model need to
be recalculated periodically to ensure they are up-
to-date
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e if the distribution is unknown, we can estimate
. the access probabilities from historic data by
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