Predictive caching in computer grids

Predictive caching

- Research carried out during 2012
- Aims to increase the performance of hardware and software solutions which store large datasets in a distributed fashion
- Improve performance compared to solutions which do not use predictive caching

Caching algorithms

Caching aims

- Improve performance by using fast temporary storage
- Minimize costs by reducing server load and faster data access
- Caching works by storing data onto a fast medium so that future requests can be served quickly
- Cached data can be previous requests or original requests (prefetching)

Traditional caching algorithms

- Least recently used (LRU)
- Least frequently used (LFU)

Problem

- Traditional algorithms do not work well in a cloud / grid environment
- Significant data transfer costs for shared 'cloud' cache

Predicting the user data access patterns

- Predicting future data requests is key to good caching algorithms
- Real data is often accessed in predictable patterns

Innovation

- With predictive caching, we use an optimization model to automatically decide which objects will be placed in the cache
- Caching the last object as in LRU may be fast but is not always optimal

The mathematical optimization model

- The cache management problem is modelled as a combinatorial optimization problem
- Solution of the problem provides the optimal cache allocation strategy

Input parameters

- 43% smaller costs compared to the LRU algorithm
- Similarly, the optimized caching algorithm produces up to 26% more cache hits and 30% smaller costs compared to LFU

Data	Ontimized	Loact	Loact	Polody

	· ·			· · ·			· ·	
me 2:	object 6	requested	, cache miss,	object 6 is	s cached,	object 2	ejected.	
me 3:	object 2	requested	, cache miss,	etc.				

- C the size of the cache
- c_{1i} the cost (latency) to retrieve object *i* from the shared cache
- c_{2i} the cost (latency) to retrieve object *i* from the server
- c_{3i} the cost to cache object i
- p_i the probability that object *i* will be requested.

Decision variables

 $x_i = \begin{cases} 1, \text{ if object } r_i \text{ is placed in the cache,} \\ 0, \text{ if object } r_i \text{ is not placed in the cache.} \end{cases}$

Optimization model

 $\min \sum_{i} c_{1i} p_i x_i + c_{2i} p_i (1 - x_i) + c_{3i} x_i$

subject to:

and

Calculating the cache object probabilities

• The probabilities in the predictive model need to be recalculated periodically to ensure they are upto-date

Data	Optimized	Least	Least	вејафу				O Show costs	○ Show autocorrelation • S	how pij First 1
generation	predictive	recently	frequently	theoretical				algo time(ms): 4,184.	1.3 21.2	PICAS
	caching	_used (LRU) _	used (LFU) _	optimum				Parameter Summary: PiCASSO MODEL: # 4 N =	1000 K = 50 cache costs :	relative. t1= 1.00 t2= 0.30
Zipf γ=1	5748	3927	4551	6112				Calculation of P (from dis Autodetect outliers: No. Time taken: 5.2 seconds	tribution or from data): From the	e data, using a window = 100
Zipf γ=1.5	8320	7418	7466	8427						
Zipf γ=2	9516	9076	9008	9458					() (1,2,3,4)5,9,12,32,45,3	(1,2,3,4)5,7,5,21,24,}
Zipf γ=3	9957	9912	9805	9945						
Zipf γ=4	9990	9977	9952	9982						
Number of a during 1000	ache hits 0 data requ	uests				Data generation	Optimized predictive caching	Least recently _used (LRU)	Least frequently _used (LFU)	Belady theoretical optimum
						Zipf γ=1	154.3	271.5	221.3	138.7
						Zipf γ=1.5	66.9	87.9	86.8	65.1
		Averag	e cost per	cache hit	>	Zipf γ=2	62.9	70.3	71.6	63.6
		during	during 10000 data requests			Zipf γ=3	39.8	40.4	42.0	40.0
		l				Zipf γ=4	59.2	59.4	59.9	59.4

show cache

Lizz3,4,5,7,9,21,24,1 (1,8,10,11,15,20,21,22,25,15,36,45) (1,2,1,4,7,9,24,32,45,1) (1,3,4,16,28,1) (1,3,4,16,2

138.7 65.1 63.6 40.0 59.4

heig-vd

Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud

Dr Efstratios Rappos Professor Stephan Robert

IICT - CETT HEIG-VD Switzerland

- This can be done using two methods:
 - if the distribution is known or can be guessed, we can fit the distribution to historic data and calculate the object request probabilities from the distribution formula
 - if the distribution is unknown, we can estimate the access probabilities from historic data by calculating the likelihood that a particular object was accessed given what the last observed request was

Hes·so

Haute Ecole Spécialisée de Suisse occidentale

Fachhochschule Westschweiz

University of Applied Sciences Western Switzerland