
Predictive caching in computer grids 

Predictive caching 
 

• Research carried out during 2012 
• Aims to increase the performance of hardware and 

software solutions which store large datasets in a 
distributed fashion 

• Improve performance compared to solutions which 
do not use predictive caching 
 

Calculating the cache 
object probabilities 

 
• The probabilities in the predictive model need to 

be recalculated periodically to ensure they are up-
to-date 
 

• This can be done using two methods: 
• if the distribution is known or can be guessed, 

we can fit the distribution to historic data and 
calculate the object request probabilities from 
the distribution formula 

• if the distribution is unknown, we can estimate 
the access probabilities from historic data by 
calculating the likelihood that a particular 
object was accessed given what the last 
observed request was 

 

          
         Dr Efstratios Rappos 
         Professor Stephan Robert   
          
         IICT - CETT 
         HEIG-VD 
         Switzerland 
 
 

  
 

Predicting the user  
data access patterns  

• Predicting future data requests is key to good 
caching algorithms 

• Real data is often accessed in predictable patterns 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Data access patterns are implemented in the 
model via calculated object request probabilities 

Caching algorithms 
    
 

Innovation 
• With predictive caching, we use an optimization 

model to automatically decide which objects will 
be placed in the cache 

• Caching the last object as in LRU may be fast but  
is not always optimal 

 

Evaluation results 
• Tested the caching framework in simulation scenarios 
• The proposed method delivers up to 46% more cache hits and  

43% smaller costs compared to the LRU algorithm 
• Similarly, the optimized caching algorithm produces up to 26%  

more cache hits and 30% smaller costs compared to LFU 
 

 
 
 

The mathematical 
optimization model 

• The cache management problem is modelled as a 
combinatorial optimization problem 

• Solution of the problem provides the optimal 
cache allocation strategy 

 
Input parameters 

•  𝒔𝒊 the size of object 𝒊  
•  𝑪 the size of the cache 
•  𝒄𝟏𝒊 the cost (latency) to retrieve object 𝒊 from the 
shared cache 
•  𝒄𝟐𝒊 the cost (latency) to retrieve object 𝒊 from the 
server 
•  𝒄𝟑𝒊 the cost to cache object 𝒊  
•  𝒑𝒊 the probability that object 𝒊 will be requested. 
 

Decision variables  
 
 
 

Optimization model 

min�𝑐1𝑖𝑝𝑖𝑥𝑖 + 𝑐2𝑖𝑝𝑖 1 − 𝑥𝑖 + 𝑐3𝑖𝑥𝑖
𝑖

 

 
subject to:  

�𝑠𝑖𝑥𝑖 ≤ 𝐶
𝑖

 

and   𝑥𝑖 ∈ 0,1  

𝑥𝑖 = �1, if object 𝑟𝑖  is placed in the cache,        
0, if object 𝑟𝑖  is not placed in the cache. 

LRU example 
 
Time 1: object 5 requested, cache miss, object 5 is cached, object 1 ejected. 
Time 2: object 6 requested, cache miss, object 6 is cached, object 2 ejected. 
Time 3: object 2 requested, cache miss, etc.  

Predictive caching example 
 
Time 1: object 5 requested, cache miss. Optimization model decides to 
cache objects 5 and 6, and eject objects 1 and 3.  
Time 2: object 6 requested, cache hit. Optimization model decides not to 
make any changes in the cache at this time period. 
Time 3: object 2 requested, cache hit, etc.  

Traditional caching algorithms 
• Least recently used (LRU) 
• Least frequently used (LFU) 

 

Caching aims 
 

• Improve performance by using fast temporary storage 
• Minimize costs by reducing server load and faster data access 
• Caching works by storing data onto a fast medium so that future 

requests can be served quickly 
• Cached data can be previous requests or original requests 

(prefetching) 
 

web server access 
pattern (bin = 1 day) 

user accessing the 
internet 

Number of cache hits 
during 10000 data requests 

Average cost per cache hit 
during 10000 data requests 

Data 
generation 

Optimized 
predictive 

caching 

Least 
recently 

used (LRU) 

Least 
frequently 
used (LFU) 

Belady 
theoretical 

optimum  
Zipf γ=1 5748 3927 4551 6112 
Zipf γ=1.5 8320 7418 7466 8427 
Zipf γ=2 9516 9076 9008 9458 
Zipf γ=3 9957 9912 9805 9945 
Zipf γ=4 9990 9977 9952 9982 

Data 
generation 

Optimized 
predictive 

caching 

Least 
recently 

used (LRU) 

Least 
frequently 
used (LFU) 

Belady 
theoretical 

optimum  
Zipf γ=1 154.3 271.5 221.3 138.7 
Zipf γ=1.5 66.9 87.9 86.8 65.1 
Zipf γ=2 62.9 70.3 71.6 63.6 
Zipf γ=3 39.8 40.4 42.0 40.0 
Zipf γ=4 59.2 59.4 59.9 59.4 

Problem 
• Traditional algorithms do not work well 

in a cloud / grid environment 
• Significant data transfer costs for 

shared ‘cloud’ cache 


	Slide Number 1

