Predictive caching in computer grids

Predictive caching Caching algorithms

« Research carried out during 2012 Caching aims Traditional caching algorithms
e Aims to increase the performance of hardware and » Least recently used (LRU)

software solutions which store large datasets in a * Improve performance by using fast temporary storage

distributed fashion » Least frequently used (LFU)

 Minimize costs by reducing server load and faster data access

« Caching works by storing data onto a fast medium so that future Problem
requests can be served quickly

e Improve performance compared to solutions which
do not use predictive caching

 Traditional algorithms do not work well

« Cached data can be previous requests or original requests in a cloud / grid environment

(prefetching) o
« Significant data transfer costs for

shared ‘cloud’ cache

Predicting the user Innovation The mathematical
data access patterns model to automatically decide which objects wi optimization model
e Predicting future data requests is key to good be placed in the cache « The cache management problem is modelled as a

caching algorithms Caching the last object as in LRU may be fast but combinatorial optimization problem

 Real data is often accessed in predictable patterns Is not always optimal « Solution of the problem provides the optimal

cache allocation strategy
1

Total terms LRU example

09 | 1 Totalquees

o8 I\ A AN o Il e e —— Time 1: object 5 requested, cache miss, object 5 is cached, object 1 ejected. Input parameters

0.7 e "\II RN ﬁ\f Cuiery diff o
v | i

Al
f|. fl'. I'l.'\ l | Ii.v.?k"\, fy I=:'-,,I'|_

AR Time 2: object 6 requested, cache miss, object 6 is cached, object 2 ejected. » s; the size of object i

|I |
0.6 Vi

SRR AT AT TR RIRIRI 5\ Time 3: object 2 requested, cache miss, etc. e Cthe size of the cache
05 B W w Y Yy Y

AR AR :I'."'i L h tents new request . . .
0.4 \ . web server access it « ¢4; the cost (latency) to retrieve object i from the
08 ", ' pattern (bin = 1 day) I BIE 5 shared cache

02 |\ H remove

oldest (LRU) * ¢,; the cost (latency) to retrieve object i from the

01 wod AN A AT W S W Y AT ‘._i
R VR SR server
0
240 260 280 300 320 340 360

* c3; the cost to cache object i

Number of elements

Bin number

user accessing the

» p; the probability that object i will be requested.
internet] :

. . Decision variables
Predictive caching example

Time 1: object 5 requested, cache miss. Optimization model decides to {1, if object 7; is placed in the cache,
Xi =

cache objects 5 and 6, and eject objects 1 and 3. 0, if object T is not placed in the cache.
Time 2: object 6 requested, cache hit. Optimization model decides not to

make any changes in the cache at this time period.
Time 3: object 2 requested, cache hit, etc. Optimization model

Percentage of References

cache contents new request

min 5 c1iPix; + Coipi (1 — x;) + ¢34x;
¢ @ e» o= 5 4 5 :
L. ® ol © el & el o el [
2000 4000 6000 8000 10000
time since last access (minutes)

6 subject to:

. . cache hit
» Data access patterns are implemented in the z six; < C
model via calculated object request probabilities 2

cache hit

i

Evaluation results Calculating the cache
« Tested the caching framework in simulation scenarios - Object prObab|||t|eS

 The proposed method delivers up to 46% more cache hits and
43% smaller costs compared to the LRU algorithm

» Similarly, the optimized caching algorithm produces up to 26%
more cache hits and 30% smaller costs compared to LFU

 The probabilities in the predictive model need to
be recalculated periodically to ensure they are up-
to-date

Data Optimized Least Least Belady

generation predictive recently frequently theoretical s | . P g T] 1 ' e This can be done USing two methods:
5748 3927 4551 SR s T « if the distribution is known or can be guessed,
gzig ;g;g ;gg: e QO OO N7 O e 7 we can fit the distribution to historic data and
9957 9912 9805 calculate the object request probabilities from

9990 9977 9952 the distribution formula

e if the distribution is unknown, we can estimate
. the access probabilities from historic data by
[Number of cache hits

during 10000 data requests Data Optimized Least Least Belady calculating the likelihood that a particular

ti dicti tl f tl th tical . .
B hing Used (LRL) used (LFU) optimun object was accessed given what the last

1223 . . : observed request was

H P|.2 P23 Pm
Average cost per cache hit . 62.9 : : : ®_’®_’ .
during 10000 data requests - 222 ' ' ' P21 T l Ps: Piem
Prz Pz

_ Dr Efstratios Rappos
Professor Stephan Robert

| .. : IICT - CETT
Haute Ecole d'Ingénierie et de Gestion HEIGAVD

dU Canton de VaUd Switzerland § University of Applied Sciences

Western Switzerland

~

	Slide Number 1

